|
Bonnesen's inequality is an inequality relating the length, the area, the radius of the incircle and the radius of the circumcircle of a Jordan curve. It is a strengthening of the classical isoperimetric inequality. More precisely, consider a planar simple closed curve of length bounding a domain of area . Let and denote the radii of the incircle and the circumcircle. Bonnesen proved the inequality : The term in the left hand side is known as the isoperimetric defect. Loewner's torus inequality with isosystolic defect is a systolic analogue of Bonnesen's inequality. ==References== * Bonnesen, T.: "Sur une amélioration de l'inégalité isopérimetrique du cercle et la démonstration d'une inégalité de Minkowski," ''C. R. Acad. Sci. Paris'' 172 (1921), 1087–1089. * Yu. D. Burago and V. A. Zalgaller, ''Geometric inequalities''. Translated from the Russian by A. B. Sosinskiĭ. Springer-Verlag, Berlin, 1988. ISBN 3-540-13615-0. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Bonnesen's inequality」の詳細全文を読む スポンサード リンク
|